Trie 是一種樹狀結構,可以用來在眾多字串中快速搜尋某個字串。當然這樣問題也可以用 hash table 來解決,但是 Trie 在解決某些問題上有他的優勢,
- 找出每個有特定 prefix 的字串
- 按照字典順序列出所有字串
hash table 面對上述問題,有兩個缺點
- 如果 input 大部份都擁有一樣的 prefix ,hash table 相對 trie 會耗費較多記憶體空間。
- hash table 可能發生碰撞,這會使得搜尋的 time complexity 糟糕到 O (n) ,n 是總共插入的資料數量,然而 Trie 執行搜尋可以保持時間複雜度僅有 O (k),k 是搜尋字串的字元數量。
Trie 樹利用字串之間的共同前綴,將重複的前綴放在同一條路徑上,即可畫出如下圖的樹狀架構。
Trie 在現實生活中的應用相當常見,像是搜尋引擎的關鍵字建議或是 word 上的錯誤字訂正。
以下來看兩題 Leetcode 範例:
Leetcode #208 Implement a Trie
- Trie 的 root 是不含資料
- 每個 node 都包含一個 boolean 變數,紀錄該 node 是不是一個單字的結尾。
方法 1
- 有 constructor 和 Destructor ,該題討論區很多解答都沒有完整的這樣寫。
- 題目有說字串組成只包含小寫英文,可以直接透過 vector 劃分好大小。
class Trie {
public:
/** Initialize your data structure here. */
Trie() {
root = new TrieNode();
}
/** Inserts a word into the trie. */
void insert(string word) {
TrieNode *curr = root;
for (auto ch:word)
{
if (curr->children[ch-'a'] == nullptr)
{
struct TrieNode *newNode = new TrieNode();
curr->children[ch-'a'] = newNode;
}
curr = curr->children[ch-'a'];
}
curr->isEndOfWord = true;
}
/** Returns if the word is in the trie. */
bool search(string word) {
TrieNode *curr = root;
for (auto ch:word)
{
if (curr->children[ch-'a'] == nullptr)
return false;
curr = curr->children[ch-'a'];
}
return curr->isEndOfWord;
}
/** Returns if there is any word in the trie that starts with the given prefix. */
bool startsWith(string prefix) {
TrieNode *curr = root;
for (auto ch:prefix)
{
if (curr->children[ch-'a'] == nullptr)
return false;
curr = curr->children[ch-'a'];
}
return true;
}
private:
struct TrieNode {
bool isEndOfWord;
vector<TrieNode*> children;
TrieNode() {
isEndOfWord = false;
children = vector<TrieNode*>(26, nullptr);
}
~TrieNode() {
for (auto child:children)
{
if (child) delete child;
}
}
};
struct TrieNode *root;
};
方法 2 unordered_map
- 如果可能字母只有英文字母,當然採取方法 1 的 array 即可,但如果可能的字元有很多可能,採取 unordered_map 會比較好
class Trie {
public:
/** Initialize your data structure here. */
Trie() {
root = new TrieNode();
}
/** Inserts a word into the trie. */
void insert(string word) {
TrieNode *curr = root;
for (auto ch:word)
{
if (!curr->children.count(ch))
{
struct TrieNode *newNode = new TrieNode();
curr->children[ch] = newNode;
}
curr = curr->children[ch];
}
curr->isEndOfWord = true;
}
/** Returns if the word is in the trie. */
bool search(string word) {
TrieNode *curr = root;
for (auto ch:word)
{
if (!curr->children.count(ch))
return false;
curr = curr->children[ch];
}
return curr->isEndOfWord;
}
/** Returns if there is any word in the trie that starts with the given prefix. */
bool startsWith(string prefix) {
TrieNode *curr = root;
for (auto ch:prefix)
{
if (!curr->children.count(ch))
return false;
curr = curr->children[ch];
}
return true;
}
private:
struct TrieNode {
bool isEndOfWord;
unordered_map<char, TrieNode*> children;
TrieNode() {
isEndOfWord = false;
}
~TrieNode() {
for (auto child:children)
{
if (child.second) delete child.second;
}
}
};
TrieNode *root;
};
Leetcode #211 Design Add and Search Words Data Structure
這題為上一題的延伸,差別在於要處理 '.' 這個特殊字元。
方法 1 backtracking
- 透過 queue 紀錄所有可能選項,只要遇到 '.' ,無條件將所有的 children 節點加入
class WordDictionary {
public:
/** Initialize your data structure here. */
WordDictionary() {
root = new TrieNode ();
}
void addWord(string word) {
TrieNode *curr = root;
for (auto ch:word)
{
if (!curr->children.count(ch))
{
TrieNode *newNode = new TrieNode();
curr->children[ch] = newNode;
}
curr = curr->children[ch];
}
curr->isEndOfWord = true;
}
bool search(string word) {
queue<TrieNode *> qu;
qu.push(root);
for (auto ch:word)
{
int size = qu.size();
for (int i=0; i<size; i++)
{
TrieNode *curr = qu.front();
if (ch == '.')
{
for (auto child:curr->children)
{
qu.push (child.second);
}
}
else
{
if (curr->children.count(ch))
{
qu.push (curr->children[ch]);
}
}
qu.pop();
}
}
// check all vector node's isEndOfWord
while (!qu.empty())
{
TrieNode *curr = qu.front();
if (curr->isEndOfWord)
return true;
qu.pop();
}
return false;
}
private:
struct TrieNode {
bool isEndOfWord;
unordered_map<char, TrieNode*> children;
TrieNode () : isEndOfWord(false) { }
~TrieNode () {
for (auto child:children)
{
if (child.second) delete child.second;
}
}
};
TrieNode *root;
};
方法 2 遞迴法
class WordDictionary {
public:
/** Initialize your data structure here. */
WordDictionary() {
root = new TrieNode ();
}
void addWord(string word) {
TrieNode *curr = root;
for (auto ch:word)
{
if (!curr->children.count(ch))
{
TrieNode *newNode = new TrieNode();
curr->children[ch] = newNode;
}
curr = curr->children[ch];
}
curr->isEndOfWord = true;
}
bool search(string word) {
return searchWord (word.c_str(), root);
}
private:
struct TrieNode {
bool isEndOfWord;
unordered_map<char, TrieNode*> children;
TrieNode () : isEndOfWord(false) { }
~TrieNode () {
for (auto child:children)
{
if (child.second) delete child.second;
}
}
};
TrieNode *root;
bool searchWord (const char* word, TrieNode *root)
{
for (int i=0; root && word[i]; i++)
{
if (word[i] == '.')
{
bool flag = false;
for (auto child:root->children)
{
flag = flag | searchWord (word+i+1, child.second);
}
return flag;
}
else
{
root = root->children[word[i]];
}
}
return root && root->isEndOfWord;
}
};
Reference
Updated on 2021-02-19 22:04:23 星期五